Internal Friction Associated with High-temperature Dislocation Mobility
نویسنده
چکیده
I n t e r n a l f r i c t i o n associated w i t h d i s l o c a t i o n mobil i t y can be c las s i f i e d i n t o th ree catagor ies: (1) Those o r i g i n a t e d from t h e i n t r i n s i c p roper t ies o f s i n g l e d is loca t ions ; (2 ) those o r i g i n a t e d from the i n t e r a c t i o n between d is. l o c a t i o n s and p o i n t defects; (3 ) those o r i g i n a t e d from d i s l o c a t i o n c l imb and from the coorperat ive behavior o f groups o f d i s l o c a t i o n s (e.g., d i s l o c a t i o n p i leups, g r a i n boundaries, subgrain boundaries, e t c . ) g i ve r i s e t o r e l a xa t ion phenomena o n l y a t h igher temperatures. I t seems, thus, the t o p i c o f i n t e r n a l f r i c t i o n associated w i t h h igh temperature d i s l o c a t i o n rnobi l i t y (Theme 3) should inc lude cataoory (3) and p a r t o f catagory (2 ) concerninq w i t h the d is loca t ion -po in t -de fec t i n t e r a c t i o n a t h igh temperatures. The t e r n "h igh temperature" used here may be def ined as the range o f temperature a t wich the p inn ing po in ts o r " atmosphere" concerned are "mobile" and migrate w i t h d i s l o cat ions. The papers o f Theme 3 may be discussed under t i le f o l l o w i n g headings: I. Mobile p inn ing p o i n t s m i g r a t i n ~ w i t h d is loca t ions ; 11. d i s l o c a t i o n p i leups and d i s l o c a t i o n cl imb; 111. g r a i n boundary re laxa t ion ; I V . h igh temperature p roper t ies o f s o l i d s r e l a t e d t o d i s l o c a t i o n m o b i l i t y a t n ign temperatures. Various models and viewpoints have been proposed by d i f f e r e n t authors and i t i s h i g h l y i n t e r e s t i n g t o s t a r t a c r i t i c a l discussion. 1. Mobile Pinninp Points M ig ra t ing w i t h Dis locat ions. R i t c h i e and Sprungmann / l / a t t r i b u t e d the threelow-f requency i n t e r n a l f r i c t i o n (Q-l) peaks (P0,P1,P2) they observed i n deformed and annealed p o l y c r y s t a l l i n e 5N cl-Zr t o the rma l l y ass is ted unpinn ing o f d i s loca t ions , l o n g i t u d i n a l andtra.nsversediffusions o f the p inn ing p o i n t s (assumed t o be the 17-23 pg/g o f oxygen contained i n the U-Zr) i n the d i s l o c a t i o n core (LCG and TCD) respec t i ve ly . The authors s ta ted t h a t peaks s i e i l a r t o P0,P1 and P3 have been observedin s i l v e r /2/ and there fo re the core r e d i s t r i b u t i o n o f i m p u r i t y i n t e r s t i t i a l s appears t o be a general phenomenonwhichcontributes peaks t o the lowfrequency Q-1 spectra 0.f deformed metals. The authors claimed t h a t t h i s p a r t of the spectrum (Pp) was a t t r i b u t e d erroneouS1~1 t o g r a i n boundary (GB) re laxa t ion . It seems t h a t t h i s asser t ion may n o t be conciusive. The peaks P1 and P2 a t t r i b u t e d t o LCC and TCD may a lso be respec t i ve ly the so lu te €33 peak ( 0 i n a-Zr) associated w i t h GB s l i d i n g and the GB peak associated w i t h CB m ig ra t ion ( c f / a / ) . 2. Dis loca t ion Pi leups and D is loca t ion Climb.-In the paper by R i v i e r e , Arnirault and Woirgard /4/ , the authors claimed once and again t h a t the peaks associated w i t h the p o l y and the s ing le c r y s t a l s are i d e n t i c a l as regards the l o c a t i o n ( i n both temperat u r e and frequency) and the behavior dur ing successive annealings. So the authors asserted t h a t i t i s confirmed t h a t the geometry o f the d i s l o c a t i o n arrangement has the most important in f luence t o these peaks and the G B ' s have on ly an i n d i r e c t *on leave from I n s t i t u t e o f Sol i d S ta te Physics, Academia Sinica, Hefe i , China Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981562 65-422 JOURNAL DE PHYSIQUE i n f luence through the i n t e r a c t i o n s w i t h the d i s l o c a t i o n network. It seems t h a t the experimental r e s u l t s reoor ted by the authors i n t h i s paper and i n those publ ished p rev ious ly /5-S,2/ showing t h a t the r e l a x a t i o n peaks appeared i n s l i g h t l y deformed s ing le c r y s t a l s are i n the same temperature range as the "orthodox" GB peaks i n pol y c r y s t a l s need t o be re-examined and analysed r a t h e r c a r e f u l l y ana the asser t ion t h a t the GB peak i s due t o d i s l o c a t i o n motion i n s i d e the g ra ins has much t o be d j s cussed. It seems that , i n many cases, the authors compared the r e s u l t s o f po lycrys t a l l i n e and s ing le -c rys ta l specimens w i t h d i f f e r e n t p u r i t i e s , o r w i t h d i f f e r e n t cold-work s tates. Although the Q-1 peaks sometimes occured i n near l y the same temper a t u r e req ion i n po lyc rys ta l l i n e and "s ing le -c rys ta l " specimens, but c e r t a i n l y they are n o t i d e n t i c a l by ca re fu l analys is . The procedure adopted f o r subst ract in9 the high-temperature Q-1 background should be examined ui t k extreme care. A1 so the height o f the peak i n c r ~ l s t a l l i n e specimens i s much h igher than those i n the s ing le -c rys ta l specimens. This leads t o the quest ion t h a t whether the s ing le -c rys ta l specimens used by the authors are c r y s t a l s wi thout any GB'S. To be sure, r e a l r e l a x a t i o n peaks may a1 so appear i n deformed s i n g l e c r y s t a l S , b u t the authors are q u i t e r i g h t i n emphasizing t h a t i t i s s t i l l premature t o venture prec ise assumption as r e ~ a r d s the elementary mechanism responsib le f o r the motion o f the d is loca t ions i n s i d e the rains because o f the lack o f s u f f i c i e n t l y prec ise values o f the a c t i v a t i o n parameters. Furthermore, one should be very ca re fu l i n t a k i n ~ Q1 measurements w i t h s l i g h t l y deforned c r y s t a l s i n ascending temperatures because o f the "ambiguous" Q ~ peaks r e s u l t e d from the anneal ins e f f e c t . I t i s very d i f f i c u l t t o avoid the cold-working e f f e c t in t roduced i n mounting the h i g h l y softened s i n c l e c r y s t a l specimens fo r C-' measurements. Such e f f e c t can o n l y be "e l iminated" by a long-t ime anneal ing a t very h igh tenperatures. It i s c e r t a i n t h a t the cold-work s t a t e ano the d i s l o c a t i o n con f igu ra t ion i n the g r a i n proper would in f luence 63 beahvior and the d i s l o c a t i o n con f igu ra t ion i n the Ga'S, b u t the GB peak observed i n p o l y c r y s t a l s does n o t need t o be associated w i t h the same d i s l o c a t i o n group as t h a t responsib le f o r the poss ib le r e l a x a t i o n peaks observed i n s l i g h t l y deformed s ing le c r y s t a l S . The r e l a x a t i o n behavior o f the s l i p bands ( d i s l o c a t i o n p i leups) i n deformed s i n g l e and p o l y c r s y t a l s and o f the d is locat i o n groups i n high-angle GB'S may be s i m i l a r and may g ive r i s e t o s i m i l a r r e l a x a t i o n peaks b u t no t necessar i ly i d e n t i c a l as regards the l o c a t i o n and the behavior dur ing successive annealings. Thus i t seems premature t o consider t h a t the "orthodox" CB peak observed i n completely r e c r y s t a l l i z e d p o l y c r y s t a l l i n e specimens i s n o t o r i g i n a t e d from GB r e l a x a t i o n process. I n passing, i t may be worthwhi le t o c i t e a few examples i l l u s t r a t i n g t h a t the s t a t e i n the g r a i n proper o r the mutual o r i e n t a t i o n o f the neighbouring gra ins do inf luence the r e l a x a t i o n behavior o f the GB'S. I t has been shown f o r 99.391 A1 t h a t the amount o f co ldwork ing p r i o r t o t h e r e c r y s t a l l i z a t i o n o f t h e specimen has cons ide rab le i n f l uence on t h e GB r e l a x a t i o n behav ior . A h i g h e r amount o f p r e v i o u s co ld -work ing s h i f t s t h e GB peak t o a l ower temperature / g / . T h i s has been a t t r i b u t e d t o t h e d i f f e r e n c e i n t h e mutual o r i e n t a t i o n o f ne ighbou r i ng g r a i n s . It has a l s o been shown i n 39.97 e l e c t r o l y t i c Cu /10/ t h a t t h e h e i g h t o f t h e GB peak a t 280°C ( f = l . S tiz, g r a i n s i z e o f specimen=0.04 mm) decreased w i t h an i nc rease o f t h e amount o f c o l d r e d u c t i o n p r i o r t o annea l i ng and d isappeared a t a p r i o r c o l d r o l l e d r e d u c t i o n o f 90.3 %. And t h i s has been shown t o be r e l a t e d t o t h e f o r m a t i o n o f t h e (100) [001] c u b i c s t r u c t u r e l e a d i n g t o t h e f o r m a t i o n of low-ang le GB's i n s t e a d o f t h e h igh-ang le GB's i j h i c h g i v e r i s e t o t h e "or thodox" GB peak. I n commenting a paper e n t i t l e d " I n t e r n a l F r i c t i o n a t Very H igh Temperatures" /11/, Crussard suggested as e a r l y as i n 1950 /12/ t h a t as we observed t h a t c r y s t a l s a r e g e n e r a l l y po l ygon i zed , so as a w a l l o f d i s l o c a t i o n , must induce some Q ~ and t h e Q-l a t v e r y h i g h temperatures above t h e temperature r e g i o n o f t h e GB peak c o u l d be due t o p o l y g o n i z a t i o n . I n t h i s connect ion , t h e o b s e r v a t i o n o f medium-temperature Q-1 peaks i n s u p e r h i g h p u r i t y (99.9999) A1 and Mg p o l y c r y s t a l s as r e p o r t e d by Esnouf and Fantozz i /13/ i s notewor thy . I n commenting a p rev ious paper by Esnouf, Gabbay and Fan tozz i / l 4 / concern ing t h i s medium-temperature peak, F r i e d e l /15/ suggested t h a t t h i s v e r y h i g h Q-1 peak (about 0.08) i s o r i g i n a t e d f rom t h e s h i f t by c r o s s s l i p o f t h e nodes of po l ygon i zed w a l l s . Now Esnouf and Fan tozz i emphasize t h a t F r i e d e l ' s model cannot h o l d f o r t h e s i m i l a r case o f h i g h p u r i t y Mg as t h e a c t i v a t i o n energy f o r d i s l o c a t i o n mo t i on by c r o s s s l i p i s v e r y h i g h f o r hexagonal me ta l s . They a t t r i b u t e d t h e r e f o r e t h i s peak t o t h e d i s l o c a t i o n g l i d e c o n t r o l l e d by j o g c l i m b i n g and d i f f u s i o n o f vacancies a long d i s l o c a t i o n s . However, t h e ques t i ons r a i s e d by F r i e d e l were n o t answered, t h e most i m p o r t a n t o n e s a r e : ( l ) The assumed d i s t a n c e between j o g s o f 1500 b ( b i s t h e Burgers v e c t o r ) i n thermal e q u i l i b r i u m i s t o o l a r g e f o r A1 a t 400K; ( 2 ) i t seems s u p r i s i n g t h a t a j o g c l i m b i n g t h r u a d i s t a n c e o f 1 o r 2 b can g i v e r i s e t o such a h i g h Q ~ peak and a co r respond ing l y l a r g e modulus drop. As t h e au tho rs ment ioned t h a t t h i s peak i s absent i n 5N aluminium, i t seems t h a t these h i g h 9 -1 peaks observed i n 6N A1 and Mg p o l y c r y s t a l s a t temperature somewhat below t h e temperatures o f t h e GB peaks o f 99.991 A1 ( a t 285OC f o r f=0.8 Hz) and 99.97 Mg ( a t 220°C f o r f=0.5 Hz) /16/ may p o s s i b l y be t h e r e a l s o l v e n t GB peaks o f A1 and #g o f v e r y h i g h p u r i t y . Then t h e G3 peaks observed e a r l i e r i n l e s s pure A1 and Mg p o l y c r y s t a l s were a c t u a l l y t h e s o l u t e GB peaks. Such a p o s s i b i l i t y has been imag ined sometime ago /17/. The average g r a i n s i z e o f t h e A1 and Mg specimens used b y Esnouf e t a1 was about 1 mm which i s comparable w i t h t h e s m a l l e s t d imension o f t h e specimen. It was shown i n t h e case o f 99.991 A1 t h a t a noticeable GB peak appears even when t h e average g r a i n s i z e i s comparable t o t h e d iameter o f t h e w i r e specimen l . This g i ves an a d d i t i o n a l suppo r t t o t h e p r o p o s i t i o n t h a t t h e medium-temperat u r e peaks a r e s o l v e n t GB peaks. The con t i nued e f f o r t o f Gond i ' s group o f making KO peak a n a l y s i s by means o f C5-424 JOURNAL DE PHYSIQUE 9-1 and dynamic modulus measurements d u r i n g deformat ion i s h i g h l y i n s p i r i n g /19-23/. I n t h e paper submi t ted t o t h i s conference /24/, t h i s group repo r ted t h e r e s u l t s o f dynamic modulus and Q-1 measurements c a r r i e d o u t on 99.99 A1 d u r i n g creep deformat ion The ( 8 ) f u n c t i o n s g i v i n g t h e d i s t r i b u t i o n o f d i s l o c a t i o n segments bo th o f mobi le and immobi le d i s l o c a t i o n s were analysed u t i l i z i n g creep curves, dynamic modulus and TEN data . The conc lus ion was made t h a t t h e exper imenta l data a r e e i t h e r c o n s i s t e n t w i t h respec t t o t h e 5)-1 peak observed by Esnouf e t a1 /14/ a t 130°C ( 1 Hz) o r w i t h t h e K1 peak /25/. And t h i s was considered by t h e authors as a c o n f i r m a t i o n o f t h e assurnp t i o n made i n t h e i r p rev ious papers t h a t t h e peak K1, observed i n correspondence t o K6 peak, i s connected w i t h d i s l o c a t i o n s . I t i s t o be p o i n t e d o u t t h a t t h e peak observed by Esnouf e t a1/14/ appears o n l y i n 6N A1 ( n o t i n t h e 99.99 A1 used by t h e au tho rs ) . The a u t h o r ' s a s s e r t i o n t h a t t h e peak K1 i s observed i n correspondence t o K6 peak needs t o be analysed r a t h e r c a r e f u l l y . The K-peak (K1,K2) observed by Gendi ' S group (1976) /25/ i n 99.6 mac roc rys ta l l i n e A1 i s n o t i n correspondence t o t h e K6 peak observed by K6 (1947) /16/ ( a t 285°C f o r f=0.8 Hz). T h i s K-peak shou ld be compared w i t h t h e peak observed i n 99.2 po l yc rys t a l l i n e A1 which appeared around 220°C ( f = l H z ) /11,26/. Then i t can be seen t h a t t he K-peak ( o f macrocrys ta l l i n e A l ) appeared d e f i n i t e l y a t a temperature about 60°C h i $ h e r than t h e GB peak o f p o l y c r y s t a l l i n e A1 o f about t he same p u r i t y . The a u t h o r ' s creep da ta may be r e l a t e d t o t h e K-peak o f 99.99 m a c r o c r y s t a l l i n e A1 whichinay be con-nected w i t h d i s l o c a t i o n s , b u t t h i s conc lus ion cannot be extended t o t h e K6 peak observed i n 93.991 p o l y c r y s t a l l i n e A1 /16/. From t h e c o n d i t i o n s f o r t h e appearance and disappearance o f t he K-peak, we have reasons t o assume t h a t t h e K-peak i s r e l a t e d t o d i s l o c a t i o n anneal ing and po l ygon iza t i on . It seems t h a t t h e v a r i a t i o n and disappearance o f t h e GB peak d u r i n g p l a s t i c de fo r mat ion cannot be cons idered as a suppor t t o t h e i n t e r p r e t a t i o n o f t h e K6 peak i n terms o f t h e c o n t r i b u t i o n s o f d i s l o c a t i o n s i n s i d e t h e g ra ins . The s t r u c t u r e change a t t he GB d u r i n s p l a s t i c deformat ion nay a l s o cause t h e disappearance o f t h e GB peak /ll/. 3. Gra in Boundary Relaxat ion. A conc re te d i s l o c a t i o n model o f high-angle GB's i n terms o f t h e inhovogeneous s l i d i n n o f t h e cont inuous d i s l o c a t i o n i n t h e GB's suggest e d by Sun and K6/3/ seems t o be ab le t o e x p l a i n many exper imenta l r e s u l t s . For h i g h p u r i t y i s o t r o p i c meta ls , t h e v i s c o s i t y f o r GB s l i d i n g i s c o r r e l a t e d w i t h t h e d i f f u s i o n c o e f f i c i e n t a long GB, Db, by an express ion s i m i l a r t o E ins te in-Stokes f o r mula. The optimum temperatures o f GB Q-l peaks f o r a number o f pure meta ls c a l c u l a t e d acco rd ing t o t h i s model and s l i d i n g mechanism a r e f a i r l y c l o s e t o t h e cor responding expe r imen ta l l y observed v a l u e s . I t i s shown t h a t f o r impure meta ls , t h e v i s c o s i t y o f some GG'S i s cons ide rab l y increased by t h e s e l e c t i v e seg reg ra t i on o f i m p u r i t i e s a long them, so t h a t another Q-l peak ( t h e s o l u t e peak) appears a t a temperature above t h e ,GB peak i n pu re metal ( t h e s o l v e n t peak). The s o l u t e ~ e a k w i l l auuear a t a temperat u r e below t h a t o f t h e s o l v e n t ~ e a k o n l y when p r e c i p i t a t i o n has occured a t t h e GB's g i v i n g r i s e t o a sma l l e r CB v i s c o s i t g . Th i s has been observed p r e v i o u s l y i n t h e cases o f impure A1 Ill/, Cu c o n t a i n i n g B i /27/ , Cu c o n t a i n i n g 0 /g/ and now a l s o i n KO c o n t a i n i n g 0/28/and i n d i l u t e b i n a r y A1 -Cu, A1 -Fe and A1 -S i a1 l oys /29/. A1 so, i n a n i s o t r o p i c pure me ta l s and i n t h e presence o f i n t e r n a l s t r e s s , t h e m i g r a t i o n o f GB's may cause another h ightemperature ? l peak o r a h i g h 3 -1 back-ground i n add i t i o n t o t h e GB peak assoc ia ted w i t h GB s l i d i n g . I t i s t o be p o i n t e d o u t t h a t such a cont inunas d i s l o c a t i o n model and s l i d e mechanism can a l s o be a p p l i e d t o r e l a x a t i o n problems o f o t h e r t ypes of d i s l o c a t i o n group such as t h e s l i p bands o r d i s l o c a t i o n p i l e u p s . T h i s may be one o f t h e reasons why t h e r e l a x a t i o n phenomena s i m i l a r t o GB r e l a x a t i o n have sometimes been observed i n s l i g h t l y deformed s i n g l e c r y s t a l s . It was q u i t e a puzz le why s o l u t e peak was n o t observed w i t h t h e s o l v e n t peak i n a-Fe c o n t a i n i n g carbon /30/ . Now :!aria and Zhu /28/ observed a carbon s o l u t e peak a t t h e h i g h e r temperature s i d e of t h e i r o n GB peak f o r Fe c o n t a i n i n g 0.0002 wt% and 0.0005 wt% carbon, and t h i s s o l v e n t peak disappeared as t h e amount o f carbon i n c r e a sed up t o 0.0027 wt%. S o l u t e GB peaks have a l s o been observed by L i e t a1 i n a-Fe/31/ and i n Fe-Cr-F.l a l l o y s /32/ c o n t a i n i n g v e r y smal l amount of r a r e e a r t h elements.4. A p p l i c a t i o n s . It i s i n s p i r i n g t h a t t h e h ightemperature Q-' phenomena ( i n c l u -d i n g GB r e l a x a t i o n and t h e h ightemperature background) have been a p p l i e d t o manyproblems hav ing p r a c t i c a l s i g n i f i c a n c e such as t h e i n v e s t i g a t i o n o f t h e d i s t r i b u t i o nand t h e s t a t e o f smal l amounts o f r a r e e a r t h elements i n u i r o n /31/, t h e mechanismo f t h e improvement o f t h e h ightemperature p r o p e r t i e s of Fe-Cr-A1 a l l o y s /32/ , t h en o n d e s t r u c t i v e i n v e s t i g a t i o n o f GB seg rega t i on o f Sb and t h e growth k i n e t i c s o f t h esecondary r e c r y s t a l l i z a t i o n i n g r a i n o r i e n t e d Fe-Si a l l o y s /33/ , /34/ , t h e s teadys t a t e c reep o f 25Cr-20Ni a u s t e n i t i c s t a i n l e s s s t e e l s /35/ and t h e creep r u p t u r e be-h a v i o r o f A1 a l l o y s /29/ . References/l/I . G . R i t c h i e , K.M. Sprungmann, t h i s conf reence (Theme 3 ) ./2/ P,. R i v i e r e , J.P. Amiraul t, J . L io i rgard , 6-ICIFUAS (1977), p.749./3/ Z.Q. Sun, T.S. K@, t h i s conference (Theme 3 ) ./4/ A. R i v i e r e , J.P. Ami rau l t , J . Woirnard, t h i s conference (Theme 3 ) ./5-8/ J . ldo i rgard e t a l , 5-ICIFUAS (1975), I, p.392;Nuovo Cimento, 338,424(1976); P h i l . Mac., %,623(1976); i n " I n t e r n a 1 F r i c t i o n and UTlFasonic A t t e -n u a t i o n i n S o l i d s " (ed.C.C.Smith,Pergamon,1980), p.293./9/ T.S. K@, J . app l . Phys., 0 , 2 7 4 ( 1 0 4 9 ) ./10/ M.G. Yan, Z.11. Yuan, Actd Phys ica S i n i c a , If, 51(1975)/11/ T.S. K6, J . app l . Phys., 21,414(1950)./12/ C . Crussard, p r i v a t e c o r n m u ~ c a t i o n s ( J u l y , 1950)./13/ C. Esnouf, 6 . Fan tozz i , t h i s conference (Theme 3 ) ./14/ C. Esnouf, M. Gabbay, G. Fan tozz i , J. de physique, 3, L-401(1977)./15/ J. F r i e d e l , J. de Physique, 39 ,L-61(1978)./16/ T.S. K@, Phys. Rev., 71, 533(1947)./17/ A.S. Nowick,B.S. Ber ry , A n e l a s t i c Re laxa t i on i n C r y ~ t a l l i n eS o l i d s (Academic,1972), p .449./18/ T.S. K@, Phys. Rev., 72,41(1947)./19-23/ E. B o n e t t i e t a1, F y s : s t a t . s o l . (a)39,661(1977) ; E,K31(1977) ; 53,653(1979); i n U I n t e r n a l F r l c t l o n . . . " (ed. C.C.Smith, Pergamon, 1980), p . 3 n : phys.s t a t . sol.(a)63,645(1981)./24/ E. Bonetti,L.Castellani,E.Evangelista, P.Gondi, t h i s conference (Theme 3 ) ./25/ E. B o n e t t i e t a l , Nuovo Cimento, 33B,408(1976). C5-426JOURNAL DE PHYSIQUE /26/ T.S. Ke, -S. AIME,B,575(1950)./27/ T.S. KO, J. app l . Phys., g,1227(1949)./28/ Y.N. Nang. J.S. Zhu. t h i s conference (Theme 3 ) ./29/ T.C. L e i , t h i s conference (Theme 3 ) ./30/ G.W. M i l es , G.P?. Leak, Proc. Phys. Soc. Lon., 2,1529(1961)/31/ W.B. L i , Z.Q. L i u , G.P. Yang, C.H. L i , B . Zhang, t h i s conference (Theme 3 ) ./32/ W.B. L i , G.P. Yang, C.H. L i , 2.4. L i u , t h i s conference (Theme 3) ./33/ Y . Iwasaki and K. Fu j imoto, t h i s conference (Theme 3 ) ./34/ Y . Iwasak i and K. Fu j imoto, t h i s conference (Theme 3 ) ./35/ T. Yamane, Y. Takahashi, K. Hatano, t h i s conference (Theme 3).
منابع مشابه
Amplitude-dependent Internal Friction and Dislocation Mobility in Crystals
The amplitude-dependent internal friction due to dislocations oscillating in the lattice is described in terms of dislocation mobility. This kind of intemal friction is expressed in elementary forms in the two limiting cases, i.e. at hish and low frequencies, and with the results obtained, the behavior of relaxation peaks due to dislocations are discussed 1 INTRODUCTION The amplitude-dependent ...
متن کاملThe Contribution of Dislocation - Impurities Interaction to Kinetics of Martensitic Transformation of Quenched f.c.c. Fe-Ni-Mo Alloys
The kinetics of martensitic transformation in austenitic Fe-Ni-Mo alloys depends on the carbon content. Analysis of carbon redistribution between f.c.c. solid solution and dislocation has been carried out with the help of internal friction (amplitude and temperature effects) study and stress relaxation tests. The martensitic transformation was proved by magnetic induction and thermal differenti...
متن کاملApplication of Internal Friction to Analysis of Plastic Behaviour of Crystals
A relationship between dislocation internal friction, microplastic and macroplastic behaviour of crystals has been considered. Main attention has been paid to the shape of the dislocation hysteresis responsible for the amplitude-dependent internal fiction (ADIF) and to a comparison between the macroyield stress c, and microyield stress G, evaluated &om the ADIF. It is shown that the same functi...
متن کاملAnomalous Internal Friction Peaks as Function of Strain Amplitude
Anelasticity, as suggested by Zener / I / in 1948, gives rise to internal friction which is independent of the strain amplitude. The internal friction which increases with an increase of strain amplitude was explained by Koehler /2/ and Granato and Liicke /3/ in terms of vibration string and unpinning of dislocations. Early in 1949, ~d /4, 5/ observed in slightly cold-worked dilute aluminium-co...
متن کاملZener Relaxation in Al-Li Binary Alloys
Internal friction (I.F.) and modulus measurements have been carried out as a function of temperature in order to study the Li mobility in an A1 8.1 at% Li 0.03 at% Zr alloy. The results show that the sequence of 6' and 6 precipitation can be followed through the evolution of the internal friction spectra. Two peaks appear in the internal friction spectrum. The low temperature peak Pz (450 K), h...
متن کاملDislocation-solute Atom Interaction in Aluminum Studied by Amplitude-dependent Internal Friction
In order to get the information on the force-distance curve for the interaction between a dislocation and a solute atom, amplitude-dependent interna1 friction was measured at 1.7 30 K on Al-100 at ppm Zn and Al-50 at ppm Zn single crystals. The temperature dependence of applied strain under a constant decrement is the same for two concentrations with high accuracy. The data were analyzed by the...
متن کامل